当前位置: 首页 > 头条 > 正文

三角函数和差公式_三角函数和差化积

来源:互联网    时间:2023-05-04 05:47:35


(资料图片仅供参考)

1、这个题目应该是指三角函数和差化积公式的证明吧sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]   sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]   cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]   cosθ-cosφ=2sin[(θ+φ)/2]sin[(θ-φ)/2]  和差化积公式由积化和差公式变形得到.  积化和差公式是由正弦或余弦的和角公式与差角公式通过加减运算推导而得.推导过程:  sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ   把两式相加得到:sin(α+β)+sin(α-β)=2sinαcosβ  所以,sinαcosβ=[sin(α+β)+sin(α-β)]/2   同理,把两式相减,得到:cosαsinβ=[sin(α+β)-sin(α-β)]/2   cos(α+β)=cosαcosβ-sinαsinβ,cos(α-β)=cosαcosβ+sinαsinβ  把两式相加,得到:cos(α+β)+cos(α-β)=2cosαcosβ   所以,cosαcosβ=[cos(α+β)+cos(α-β)]/2   同理,两式相减,得到sinαsinβ=-[cos(α+β)-cos(α-β)]/2   这样,得到了积化和差的四个公式:   sinαcosβ=[sin(α+β)+sin(α-β)]/2   cosαsinβ=[sin(α+β)-sin(α-β)]/2   cosαcosβ=[cos(α+β)+cos(α-β)]/2   sinαsinβ=-[cos(α+β)-cos(α-β)]/2  有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的α+β设为θ,α-β设为φ,  那么α=(θ+φ)/2,β=(θ-φ)/2   把α,β分别用θ,φ表示就可以得到和差化积的四个公式:   sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]   sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]   cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]   cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]。

本文为大家分享到这里,希望小伙伴们有帮助。

X 关闭

Copyright   2015-2022 北方娱乐网版权所有   备案号:京ICP备2021034106号-50   联系邮箱: 55 16 53 8@qq.com